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ABSTRACT

It is well known that species across the world are expanding or shifting their ranges because 
of  climate change. Yet, we know little about their impact on the habitats they colonize. In an 
observational study, we examined the effect of  the fiddler crab Minuca pugnax (Smith, 1870) on 
benthic microalgal biomass in salt marshes in its expanded range (northeastern Massachusetts, 
USA). We found that plots with M. pugnax had, on average, 74% lower diatom biomass and 
77% lower cyanobacteria biomass than plots without M. pugnax. Our results indicate that this 
climate migrant can impact saltmarsh functioning by limiting benthic microalgal biomass.

Key Words: climate change, microphytobenthos, range expansion, range shift, top-down  
control, Uca pugnax

INTRODUCTION

Climate migrants are populations within a species that colonize a 
new habitat or range due to the climate-driven range expansions 
or shifts of  that species (Johnson et al., 2020). Ecologists and bio-
geographers have identified thousands of  climate migrants, from 
fishes to insects to crabs (Parmesan & Yohe, 2003; Sorte et  al., 
2010; Johnson, 2015; Hale et al., 2017). Yet, we know little about 
how climate migrants influence the functioning of  the ecosystems 
that they colonize. Fiddler crabs are excellent species to examine 
the impact of  climate migrants because they are found in inter-
tidal habitats throughout the world (Rosenberg, 2020), they can 
strongly influence ecosystem functioning (Katz, 1980; Moore, 
2019), and poleward range expansions due to ocean warming 
have been documented for some species (Johnson, 2014; Peer 
et al., 2015; Rosenberg, 2018; Truchet et al., 2019).

The fiddler crab, Minuca pugnax (Smith, 1870) (formerly Uca 
pugnax), has expanded its range north of  its historical northern 
limit of  Cape Cod, Massachusetts (MA) to Maine, USA (Johnson, 
2014; Rosenberg, 2020; DSJ, unpublished data). It lives in salt 
marshes, which are intertidal grasslands. As a burrowing eco-
system engineer (sensu Jones et  al., 1994), M.  pugnax has a strong 
influence on saltmarsh functioning, physical structure, and bio-
diversity (Katz, 1980; DePatra & Levin 1989; Gittman & Keller, 
2013). While many researchers have focused on the role of  
M. pugnax as an ecosystem engineer in salt marshes (e.g., Gittman 
& Keller, 2013; Moore, 2019), its role as a consumer has been 

overlooked. Minuca pugnax is a deposit feeder and like most spe-
cies of  fiddler crabs, it grazes benthic microalgae (also known as 
“microphytobenthos” (e.g., MacIntyre et al., 1996)) mostly diatoms 
and cyanobacteria, from the sediment surface (Shanholtzer, 1973; 
Haines & Montague, 1979; Bursey, 1985). To our knowledge, 
no one has explicitly tested the impact of  M.  pugnax on benthic 
microalgae in either its historical or expanded range. Darley et al. 
(1981) saw chlorophyll a biomass increases when they excluded 
fiddler crabs in a Georgia (USA) salt marsh. Because three species 
of  fiddler crabs (M. pugnax, the red-jointed fiddler crab M. minax 
(Le Conte, 1885), and the sand fiddler crab Leptuca pugilator (Bosc, 
1802)) co-exist in this marsh (Teal, 1958), their experiment likely 
shows the impact of  the fiddler crab community, not of  a single 
species.

There are several reasons that salt marshes found in the ex-
panded range of  M. pugnax (i.e., north of  Cape Cod, MA, USA) 
are excellent living laboratories to test the effects of  this climate 
migrant on benthic microalgal biomass. First, the grazing im-
pacts of  fiddler crabs on benthic microalgae can be isolated to 
a single species, M.  pugnax, because it is the only fiddler crab 
present in this part of  its range (Johnson, 2014; Wasson et  al. 
2019; Rosenberg, 2020). Second, the distribution of  M. pugnax 
colonies in the expanded range is patchy with tens of  meters 
between colonies (Martínez-Soto & Johnson, 2020). Finally, un-
like M. pugnax in the historical range, individuals of  M. pugnax 
in the expanded range remain close to their burrows and do 
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not appear to drove, where high-density scuttles of  crabs move 
through the marsh to graze (DSJ, personal observation). This 
restricted movement likely results in patches of  saltmarsh ben-
thos between the colonies untouched by crabs. This allowed us 
to compare benthic microalgal biomass between patches with 
and without M.  pugnax. We hypothesized that the biomass of  
benthic microalgae would be lower in patches with M.  pugnax 
compared to those without M. pugnax.

MATERIALS AND METHODS

Site description

This study was conducted in the salt marshes flooded by 
West Creek in the Plum Island Estuary in Rowley, MA, USA 
(42°44′16.0″N, 70°50′53.2″W) (Fig. 1). These salt marshes are 
part of  the Great Marsh, which is the largest expanse of  salt 
marshes in the northeastern USA. The estuary is mesotidal 
with mean tides ~2.6 m and spring tides of  3 m (Johnson 
et  al., 2007). The expansive marshes are largely above mean 
high water (so-called “high marsh”), which is dominated by 
salt hay, Spartina patens ((Aiton) Muhl, 1817)  (~45  cm shoot 
height), and punctuated by isolated patches of  stunted Spartina 
alterniflora (Loisel, 1807)  (~40 cm shoot height). The low marsh 
(below mean high water) is a 1–3 m wide band of  tall-form 
S.  alterniflora (up to 150  cm shoot height; Johnson et  al., 2016). 
Unlike marshes found in the historical range (i.e., south of  Cape 
Cod, MA, USA), where M. pugnax can inhabit both S. patens and 
S.  alterniflora habitats (Luk & Zajac, 2013; Wasson et  al., 2019), 

M. pugnax is found exclusively in the low marsh in the expanded 
range (Johnson 2014; Martínez-Soto & Johnson, 2020).

Other burrowing species present in the tall-form S. alterniflora 
zone in the Great Marsh include infaunal polychaetes and 
amphipods with burrows ≤ 1  mm in diameter (Johnson et  al., 
2007). Burrowing crabs found in salt marshes in the historical 
range, such as the red-jointed fiddler crab M.  minax, the sand 
fiddler crab L.  pugilator, and the purple marsh crab Sesarma 
reticulatum (Say, 1817), are absent from these marshes (Johnson, 
2014; Wasson et  al., 2019; Rosenberg, 2020). As a result, it 
is easy to distinguish M.  pugnax burrows from those of  other 
species.

Data collection

To test the hypothesis that M.  pugnax reduced benthic 
microalgal biomass, we selected ten plots (0.0625 m2) with fid-
dler crabs present (determined by the presence of  burrows and 
either feeding pellets or crabs) and counted burrows within the 
plot. Each crab plot was paired with a reference plot (lacking 
burrows, feeding pellets, or crabs) that was 1–2 m away, for a 
total of  20 plots. Plot pairs were at least 10 m apart from each 
other due to the patchiness of  M. pugnax colonies. We estimated 
the biomass of  benthic microalgal functional groups (dia-
toms, cyanobacteria, and green algae) on the sediment surface 
with a handheld fluorometer (BenthoTorch, BBe Moldaenke, 
Germany) in duplicate samples within each plot. Measurements 
within crab plots were taken adjacent to crab burrows, but not 
over them. Data were collected at low tide on a sunny after-
noon on 22 August 2019.

Figure 1. Sampling location. Measurements were taken along the marsh edge in the area defined by the white box. This figure is available in color at Journal 
of  Crustacean Biology online.

D
ow

nloaded from
 https://academ

ic.oup.com
/jcb/article/40/6/668/5911208 by VIR

G
IN

IA IN
STITU

TE O
F M

arine Science user on 16 M
arch 2022



D. S.  JOHNSON ET AL. 

670

Statistical analysis

To determine if  there was a statistical difference for the biomass 
of  diatom and cyanobacteria between plots with and without fid-
dler crabs, we conducted a two-tailed paired t-test for unequal 
variances in R version 4.0.0 (R Core Team 2020). Green algae 
were not detected in any plot. Prior to analysis, the duplicate sam-
ples from each plot were averaged.

RESULTS

On average, diatom biomass was 64% lower and cyanobacteria 
biomass was 77% lower in plots with M. pugnax burrows than in 
plots without burrows (P ≤ 0.02) (Fig. 2). Burrow densities in plots 
with M. pugnax ranged from 16–96 m–2.

DISCUSSION

Our results demonstrate that the fiddler crab M. pugnax in its ex-
panded range lowers the biomass of  benthic microalgae in salt 
marshes. Similar results have been found for other species of  fid-
dler crabs. For instance, the sand fiddler L.  pugilator can reduce 
sediment biomass of  chlorophyll a (a proxy of  benthic microalgae) 
by 20–70% on beaches on the east coast of  the USA during a 
single low tide (Robertson et al., 1980; Reinsel, 2004). Based on a 
mesocosm study in Australia, Kristensen & Alongi (2006) found 
that the calling fiddler crab Gelasimus vocans (Linnaeus, 1758) re-
duced sediment chlorophyll a by 75% at the surface (0–1 cm), but 

had no impact on deeper layers. This is consistent with feeding 
in fiddler crabs, which occurs on the top 1–2  cm of  sediment 
(Wolfrath, 1992).

Minuca pugnax reduces benthic microalgal biomass in salt 
marshes, and as a result it may have indirect effects on the func-
tioning and food webs of  salt marshes. Other saltmarsh animals, 
including polychaetes, gastropods, copepods, and amphipods, rely 
on benthic microalgae for food (Galván et al., 2008, 2011; Pascal 
et al., 2013). Minuca pugnax may indirectly influence the small-scale 
(as measured in meters) distribution of  these animals through ex-
ploitative competition for benthic microalgae. Further, diatoms 
and cyanobacteria excrete extracellular polymeric substances that 
create biofilms on the sediment surface (Decho, 2000). These bio-
films can stabilize sediments and reduce tidal erosion (Paterson, 
1989; Fagherazzi et al., 2013). Fiddler crabs may enhance erosion, 
not only through burrow construction and maintenance (Smith & 
Green, 2015), but also by grazing benthic microalgae, a sediment 
stabilizer. Lastly, benthic microalgae are important sinks for water-
column nitrogen and can mitigate the impacts of  nitrogen pollu-
tion (Drake et al., 2009; Hope et al., 2020; Oakes et al., 2020). By 
reducing benthic microalgae, fiddler crabs may impact the metab-
olism of  the ecosystem and limit the ability of  the marsh to uptake 
excess nitrogen. Minuca pugnax may also enhance nitrogen uptake 
by the marsh by stimulating algal production through grazing and 
converting nitrogen into secondary (i.e., crab) production.

Our results should be interpreted within the limitations of  
our study. We found that benthic microalgal biomass was lower 
in plots with M.  pugnax versus plots without M.  pugnax during a 
single low tide. Our sampling does not account for temporal dy-
namics of  benthic microalgae production. For instance, in a salt 
marsh in Argentina, Ribeiro & Iribarne (2011) found that during 
flooding tides, benthic microalgae could replenish up to 100% of  
its biomass within a day of  feeding by the Uruguayan fiddler crab 
Leptuca uruguayensis (Nobili, 1901). In a 12-day experiment in South 
African mangroves, Peer et  al. (2019) found that selective grazing 
by the fiddler crab Austruca occidentalis (Naderloo, Schubart & Shih, 
2016) lowered diatom and cyanobacteria biomass, which allowed 
green algae to flourish and resulted in no overall net effect on 
the grazing by fiddler crabs on benthic microalgal biomass. That 
said, Spivak & Ossolinki (2016), found that the average turnover 
of  benthic microalgae (measured as the biomass to production 
ratio) was 59  days in August for the habitats we sampled. This 
slow turnover time suggests that the effect of  M. pugnax on benthic 
microalgal biomass in this marsh will persist for days.

Individuals of  M.  pugnax may have greater per-capita grazing 
on benthic microalgal biomass in the expanded range than in 
the historical range because individuals are larger in the ex-
panded range than in the historical range (Johnson et  al., 2019). 
The population-level impacts of  M. pugnax on benthic microalgal 
biomass in the expanded range, however, are likely small relative 
to populations in the historical range. The densities of  the bur-
rows of  M. pugnax in the expanded range average fewer than 10 
burrows m–2 (Martínez-Soto & Johnson, 2020), whereas, burrow 
densities in the historical range can be as high as 300 burrows m–2 
(McCraith et  al., 2003). Although M. pugnax populations are cur-
rently small in the expanded range, they are growing (Martínez-
Soto & Johnson, 2020). Our results suggest that as M.  pugnax 
populations grow in their expanded range, so too will their impact 
on benthic microalgae.
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